Section 1.5 Formulas
Example 1.5.1.
\begin{align*}
3x \amp = 12  \amp    \quad  wx \amp = z     \amp \quad  \amp \text{  In both problems, $x $ is multiplied by something  }   \\
\frac{3x}{3} \amp =\frac{12}{3}  \amp \quad \frac{wx}{w} \amp =\frac{z}{w} \amp\quad \amp \text{ To isolate the $x $ we divide by $3$ or   }  w\\
x \amp = 4  \amp  \quad x \amp =\frac{ z }{w}   \amp \quad  \amp \text{ Our Solution       }  
\end{align*}
Example 1.5.2.
\begin{align*}
m + n = p      \amp \quad  \text{ Solving for $n$, treat all other variables like numbers     }   \\
-m-m     \amp\quad  \text{ Subtract m from both sides    }  \\
n = p -m       \amp\quad  \text{ Our Solution     }  
\end{align*}
Example 1.5.3.
\begin{align*}
a(x - y) = b          \amp \quad  \text{ Solving for $a$, treat $(x - y)$ like a number  }   \\
\frac{a(x - y) }{(x -y)}=\frac{b}{ (x - y)}       \amp\quad  \text{  Divide both sides by   } (x-y)  \\
a =\frac{b}{ x – y}    \amp\quad  \text{  Our Solution   }  
\end{align*}
Example 1.5.4.
\begin{align*}
a(x - y) = b      \amp \quad  \text{  Solving for $x$, we need to distribute to clear parenthesis     }   \\
ax - ay = b       \amp\quad  \text{  This is a two -  step equation, $ay$ is subtracted from our x term   }  \\
+ ay + ay          \amp\quad  \text{  Add $ay$ to both sides   }  \\
ax = b + ay            \amp \quad  \text{ The $x $ is multiplied by    }  a \\
\frac{ax}{a}=\frac{b+ay}{a}         \amp\quad  \text{ Divide both sides by     } a  \\
x = \frac{b + ay}{ a}      \amp\quad  \text{ Our Solution  }  
\end{align*}
Example 1.5.5.
\begin{align*}
y = mx + b  \amp \quad  \text{    Solving for $ m$, focus on addition first  }   \\
-b\qquad -b      \amp\quad  \text{  Subtract $ b$ from both sides  }  \\
y - b = mx     \amp\quad  \text{ Notice that $ m$ is multiplied by $ x$.   }  \\
\frac{y-b}{x}=\frac{mx}{x}  \amp \quad  \text{    Divide both sides by   }   x\\
\frac {y - b}{ x} = m         \amp\quad  \text{ Our Solution   }  
\end{align*}
Example 1.5.6.
\begin{align*}
A = \pi r^2 + \pi rs            \amp \quad  \text{ Solving for$ s$, focus on what is added to the term with     }  s \\
- \pi r^2 \qquad -\pi r^2        \amp\quad  \text{ Subtract $\pi r^2 $ from both sides    }  \\
A - \pi r^2 = \pi rs      \amp\quad  \text{ Notice that $ s $ is multiplied by }  \pi r  \\
\frac{ A - \pi r^2}{\pi r} =\frac{\pi rs}{\pi r}   \amp \quad  \text{    Divide both sides by  }   \pi r \\
\frac{ A - \pi r^2}{\pi r} =s      \amp\quad  \text{  Our Solution   }  
\end{align*}
Example 1.5.7.
\begin{align*}
h=\frac{2m}{ n}        \amp \quad  \text{ Solving for $ m $. To clear the fraction we use LCD =   }   n\\
(n)h = (n)\frac{2m}{ n}         \amp\quad  \text{   Multiply each term by  }  n\\
nh =2m       \amp\quad  \text{  Reduce $n$ with denominators }  \\
\frac{nh}{2}=\frac{2m}{2}   \amp \quad  \text{  Divide both sides by  } 2  \\
\frac{nh}{2}=m     \amp\quad  \text{  Our Solution   }  
\end{align*}
Example 1.5.8.
\begin{align*}
\frac{a}{ b} + \frac{c}{ b} = e  \amp \quad \text{ Solving  for $a$. To clear the fraction we use LCD =  }  b \\
\frac{ (b)a}{ b} + \frac{(b)c}{ b} = e (b)  \amp\quad  \text{Multiply each term by } b  \\
a + c = eb      \amp\quad  \text{  Reduce $ b $ with denominators  }  \\
-c\quad -c    \amp \quad  \text{ Subtract $ c $ from both sides    }   \\
a = eb -c   \amp\quad  \text{   Our Solution }  
\end{align*}
Example 1.5.9.
\begin{align*}
a = \frac{A }{2 -b}     \amp \quad  \text{   Solving for $b$. Use LCD$= (2 - b) $ as a group  }   \\
(2 - b)a =\frac{ (2 - b)A}{ 2 -b} \amp\quad  \text{  Multiply each term by } (2-b) \\
(2 - b)a = A       \amp\quad  \text{ reduce $ (2 - b) $ with denominator  }  \\
2a - ab = A      \amp \quad  \text{  Distribute through parenthesis  }   \\
- 2a\qquad - 2a      \amp\quad  \text{ Subtract $ 2a$ from both sides    }  \\
- ab = A - 2a      \amp\quad  \text{ The $b$ is multiplied by } -a \\
\frac{-ab}{-a}=\frac{A-2a}{-a} \amp \quad  \text{    Divide both sides by  }  -a \\
b=\frac{A-2a}{-a}         \amp\quad  \text{ Our Solution  }  
\end{align*}
Example 1.5.10.
\begin{align*}
a =\frac{A}{ 2 – b}  \amp \quad  \text{ Solving for $b$. Use LCD $=(2 - b) $ as a group     }   \\
(2 - b)a =\frac{ (2 - b)A}{ 2 - b}   \amp\quad  \text{ Multiply each term by  }(2-b)  \\
(2 - b)a = A      \amp\quad  \text{  Reduce $ (2 -b)$ with denominator   }  \\
\frac{(2 - b)a}{a} =\frac{ A}{a}    \amp \quad  \text{   Divide both sides by    }  a \\
2 - b = \frac{A}{ a}  \amp\quad  \text{Focus on the positive   } 2 \\
-2 \qquad - 2 \amp\quad  \text{  Subtract $ 2 $ from both sides   }  \\
- b =\frac{ A}{ a} - 2      \amp \quad  \text{  Still need to clear the negative  }   \\
( -1)( - b)= ( -1)\frac{A}{ a} - 2( - 1) \amp\quad  \text{ Multiply (or divide) each term by  } -1 \\
b =- \frac {A}{ a} + 2       \amp\quad  \text{ Our Solution   }  
\end{align*}