Section 1.5 Formulas
Example 1.5.1.
\begin{align*}
3x \amp = 12 \amp \quad wx \amp = z \amp \quad \amp \text{ In both problems, $x $ is multiplied by something } \\
\frac{3x}{3} \amp =\frac{12}{3} \amp \quad \frac{wx}{w} \amp =\frac{z}{w} \amp\quad \amp \text{ To isolate the $x $ we divide by $3$ or } w\\
x \amp = 4 \amp \quad x \amp =\frac{ z }{w} \amp \quad \amp \text{ Our Solution }
\end{align*}
Example 1.5.2.
\begin{align*}
m + n = p \amp \quad \text{ Solving for $n$, treat all other variables like numbers } \\
-m-m \amp\quad \text{ Subtract m from both sides } \\
n = p -m \amp\quad \text{ Our Solution }
\end{align*}
Example 1.5.3.
\begin{align*}
a(x - y) = b \amp \quad \text{ Solving for $a$, treat $(x - y)$ like a number } \\
\frac{a(x - y) }{(x -y)}=\frac{b}{ (x - y)} \amp\quad \text{ Divide both sides by } (x-y) \\
a =\frac{b}{ x – y} \amp\quad \text{ Our Solution }
\end{align*}
Example 1.5.4.
\begin{align*}
a(x - y) = b \amp \quad \text{ Solving for $x$, we need to distribute to clear parenthesis } \\
ax - ay = b \amp\quad \text{ This is a two - step equation, $ay$ is subtracted from our x term } \\
+ ay + ay \amp\quad \text{ Add $ay$ to both sides } \\
ax = b + ay \amp \quad \text{ The $x $ is multiplied by } a \\
\frac{ax}{a}=\frac{b+ay}{a} \amp\quad \text{ Divide both sides by } a \\
x = \frac{b + ay}{ a} \amp\quad \text{ Our Solution }
\end{align*}
Example 1.5.5.
\begin{align*}
y = mx + b \amp \quad \text{ Solving for $ m$, focus on addition first } \\
-b\qquad -b \amp\quad \text{ Subtract $ b$ from both sides } \\
y - b = mx \amp\quad \text{ Notice that $ m$ is multiplied by $ x$. } \\
\frac{y-b}{x}=\frac{mx}{x} \amp \quad \text{ Divide both sides by } x\\
\frac {y - b}{ x} = m \amp\quad \text{ Our Solution }
\end{align*}
Example 1.5.6.
\begin{align*}
A = \pi r^2 + \pi rs \amp \quad \text{ Solving for$ s$, focus on what is added to the term with } s \\
- \pi r^2 \qquad -\pi r^2 \amp\quad \text{ Subtract $\pi r^2 $ from both sides } \\
A - \pi r^2 = \pi rs \amp\quad \text{ Notice that $ s $ is multiplied by } \pi r \\
\frac{ A - \pi r^2}{\pi r} =\frac{\pi rs}{\pi r} \amp \quad \text{ Divide both sides by } \pi r \\
\frac{ A - \pi r^2}{\pi r} =s \amp\quad \text{ Our Solution }
\end{align*}
Example 1.5.7.
\begin{align*}
h=\frac{2m}{ n} \amp \quad \text{ Solving for $ m $. To clear the fraction we use LCD = } n\\
(n)h = (n)\frac{2m}{ n} \amp\quad \text{ Multiply each term by } n\\
nh =2m \amp\quad \text{ Reduce $n$ with denominators } \\
\frac{nh}{2}=\frac{2m}{2} \amp \quad \text{ Divide both sides by } 2 \\
\frac{nh}{2}=m \amp\quad \text{ Our Solution }
\end{align*}
Example 1.5.8.
\begin{align*}
\frac{a}{ b} + \frac{c}{ b} = e \amp \quad \text{ Solving for $a$. To clear the fraction we use LCD = } b \\
\frac{ (b)a}{ b} + \frac{(b)c}{ b} = e (b) \amp\quad \text{Multiply each term by } b \\
a + c = eb \amp\quad \text{ Reduce $ b $ with denominators } \\
-c\quad -c \amp \quad \text{ Subtract $ c $ from both sides } \\
a = eb -c \amp\quad \text{ Our Solution }
\end{align*}
Example 1.5.9.
\begin{align*}
a = \frac{A }{2 -b} \amp \quad \text{ Solving for $b$. Use LCD$= (2 - b) $ as a group } \\
(2 - b)a =\frac{ (2 - b)A}{ 2 -b} \amp\quad \text{ Multiply each term by } (2-b) \\
(2 - b)a = A \amp\quad \text{ reduce $ (2 - b) $ with denominator } \\
2a - ab = A \amp \quad \text{ Distribute through parenthesis } \\
- 2a\qquad - 2a \amp\quad \text{ Subtract $ 2a$ from both sides } \\
- ab = A - 2a \amp\quad \text{ The $b$ is multiplied by } -a \\
\frac{-ab}{-a}=\frac{A-2a}{-a} \amp \quad \text{ Divide both sides by } -a \\
b=\frac{A-2a}{-a} \amp\quad \text{ Our Solution }
\end{align*}
Example 1.5.10.
\begin{align*}
a =\frac{A}{ 2 – b} \amp \quad \text{ Solving for $b$. Use LCD $=(2 - b) $ as a group } \\
(2 - b)a =\frac{ (2 - b)A}{ 2 - b} \amp\quad \text{ Multiply each term by }(2-b) \\
(2 - b)a = A \amp\quad \text{ Reduce $ (2 -b)$ with denominator } \\
\frac{(2 - b)a}{a} =\frac{ A}{a} \amp \quad \text{ Divide both sides by } a \\
2 - b = \frac{A}{ a} \amp\quad \text{Focus on the positive } 2 \\
-2 \qquad - 2 \amp\quad \text{ Subtract $ 2 $ from both sides } \\
- b =\frac{ A}{ a} - 2 \amp \quad \text{ Still need to clear the negative } \\
( -1)( - b)= ( -1)\frac{A}{ a} - 2( - 1) \amp\quad \text{ Multiply (or divide) each term by } -1 \\
b =- \frac {A}{ a} + 2 \amp\quad \text{ Our Solution }
\end{align*}