Section 9.4 Quadratic Formula
Example 9.4.1.
\begin{align*}
ax^2 + bx + c = 0 \amp \quad  \text{ Separate constant from variables     }   \\
-c\ -c \amp\quad  \text{  Subtract $c$ from both sides   }  \\
ax^2 + bx =- c  \amp\quad  \text{   Divide each term by  }  a \\
\frac{ax^2}{a} + \frac{bx}{a} =\frac{- c}{a} \amp\quad  \text{     }  \\
x^2+\frac{b}{a}x=\frac{-c}{a} \amp \quad  \text{  Find the number that completes the square    }   \\
\left(\frac{1}{2}\cdot\frac{b}{a}\right)^2=\left(\frac{b}{2a}\right)^2=\frac{b^2}{4a^2} \amp\quad  \text{   Add to both sides  }  \\
\frac{b^2}{4a^2}-\frac{c}{a}\left(\frac{4a}{4a}\right)=\frac{b^2}{4a^2}-\frac{4ac}{4a^2}=\frac{b^2-4ac}{4a^2} \amp\quad  \text{  Get common denominator on right   }  \\
x^2+\frac{b}{a}x+\frac{b^2}{4a^2}=\frac{b^2}{4a^2}-\frac{4ac}{4a^2}=\frac{b^2-4ac}{4a^2} \amp\quad  \text{   Factor  }  \\
\left(x+\frac{b}{2a}\right)^2= \frac{b^2-4ac}{4a^2}\amp \quad  \text{ Solve using the even root property     }   \\
\sqrt{\left(x+\frac{b}{2a}\right)^2}= \pm\sqrt{\frac{b^2-4ac}{4a^2}}  \amp\quad  \text{  Simplify roots   }  \\
x+\frac{b}{2a}=\frac{\pm\sqrt{b^2-4ac}}{2a} \amp\quad  \text{  Subtract $\frac{b}{2a}$ from both sides   }  \\
\amp\quad  \text{     }  \\
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \amp\quad  \text{  Our Solution   }  
\end{align*}
\begin{equation*}
\textbf{ Quadratic Formula: if } \mathbf{ax^2 +bx+c=0} \textbf{ then  } \  \mathbf{ x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} }
\end{equation*}
Example 9.4.2.
\begin{align*}
x^2 +3x+2=0  \amp \quad  \text{ $a=1$, $b=3$, $c=2$, use quadratic formula     }   \\
x=\frac{-3\pm\sqrt{3^2-4(1)(2)}}{2(1)}  \amp\quad  \text{  Evaluate exponent and multiplication   }  \\
x=\frac{-3\pm\sqrt{9-8}}{2}  \amp\quad  \text{   Evaluate subtraction under root  }  \\
x=\frac{-3\pm\sqrt{1}}{2}  \amp\quad  \text{   Evaluate root  }  \\
x=\frac{-3\pm 1}{2} \amp\quad  \text{  Evaluate $\pm$ to get two answers   }  \\
x=\frac{-2}{2} \text{ or } \frac{-4}{2}  \amp\quad  \text{  Simplify fractions   }  \\
x=-1 \text{ or } -2 \amp\quad  \text{  Our Solution   }  
\end{align*}
Example 9.4.3.
\begin{align*}
25x^2 = 30x + 11  \amp \quad  \text{ First set equal to zero   }   \\
- 30x - 11\  - 30x - 11  \amp \quad  \text{ Subtract $30x$ and $11$ from both sides   }   \\
25x^2-30x-11=0 \amp \quad  \text{ $a=25$, $b=-30$, $c=-11$, use quadratic formula     }   \\
x=\frac{30\pm\sqrt{(-30)^2-4(25)(-11)}}{2(25)}  \amp\quad  \text{  Evaluate exponent and multiplication   }  \\
x=\frac{30\pm\sqrt{900+1100}}{50}  \amp\quad  \text{   Evaluate subtraction under root  }  \\
x=\frac{30\pm\sqrt{2000}}{50}  \amp\quad  \text{   Evaluate root  }  \\
x=\frac{30\pm 20\sqrt{5}}{50}  \amp\quad  \text{  Reduce fraction by dividing each term by } 10  \\
x=\frac{3\pm 2\sqrt{5}}{5}   \amp\quad  \text{   Our Solution   }  
\end{align*}
Example 9.4.4.
\begin{align*}
3x^2+4x+8=2x^2+6x-5 \amp \quad  \text{ First set equal to zero   }   \\
-2x^2 -6x+5 \ -2x^2 -6x+5  \amp \quad  \text{ Subtract $2x^2$ and $6x$ and add $5$  }   \\
x^2 -2x+13=0 \amp \quad  \text{ $a=1$, $b=-2$, $c=13$, use quadratic formula     }   \\
x=\frac{2\pm\sqrt{(-2)^2-4(1)(13)}}{2(1)}  \amp\quad  \text{  Evaluate exponent and multiplication   }  \\
x=\frac{2\pm\sqrt{4-52}}{2}  \amp\quad  \text{   Evaluate subtraction under root  }  \\
x=\frac{2\pm\sqrt{-48}}{2}  \amp\quad  \text{   Simplify root  }  \\
x=\frac{2\pm 4i\sqrt{3}}{2}  \amp\quad  \text{  Reduce fraction by dividing each term by } 2  \\
x=1\pm2i\sqrt{3}   \amp\quad  \text{   Our Solution   }  
\end{align*}
Example 9.4.5.
\begin{align*}
4x^2 -12x+9=0 \amp \quad  \text{  $a=4$, $b=-12$, $c=9$, use quadratic formula    }   \\
x=\frac{12\pm\sqrt{(-12)^2-4(4)(9)}}{2(4)} \amp\quad  \text{  Evaluate exponents and multiplication
}  \\
x=\frac{12\pm\sqrt{144-144}}{8} \amp\quad  \text{ Evaluate subtraction inside root    }  \\
x=\frac{12\pm\sqrt{0}}{8} \amp\quad  \text{   Evaluate root  }  \\
x=\frac{12\pm 0}{8}  \amp\quad  \text{ Evaluate    }  \pm \\
x=\frac{12}{8} \amp\quad  \text{ Reduce fraction    }  \\
x=\frac{3}{2} \amp\quad  \text{  Our Solution   }  
\end{align*}
Example 9.4.6.
\begin{align*}
3x^2 +7=0 \amp \quad  \text{  $a=3$, $b=0$ (missing term), } c=7    \\
x=\frac{-0\pm\sqrt{0^2-4(3)(7)}}{2(3)} \amp\quad  \text{  Evaluate exponnets and multiplication, zeros not needed   }  \\
x=\frac{\pm\sqrt{-84}}{6} \amp\quad  \text{ Simplify root    }  \\
x=\frac{\pm 2i\sqrt{21}}{6} \amp\quad  \text{  Reduce, dividing by  } 2 \\
x=\frac{\pm i\sqrt{21}}{3} \amp\quad  \text{  Our Solution   }  
\end{align*}